Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.

Identifieur interne : 002370 ( Main/Exploration ); précédent : 002369; suivant : 002371

Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.

Auteurs : Ming Gao ; Qinjun Huang ; Yanguang Chu ; Changjun Ding ; Bingyu Zhang ; Xiaohua Su

Source :

RBID : pubmed:25080097

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plants with heterosis/hybrid vigor perform better than their parents in many traits. However, the biological mechanisms underlying heterosis remain unclear. To investigate the significance of DNA methylation to heterosis, a comprehensive analysis of whole-genome DNA methylome profiles of Populus deltoides cl.'55/65' and '10/17' parental lines and their intraspecific F1 hybrids lines was performed using methylated DNA immunoprecipitation (MeDIP) and high-throughput sequencing.

RESULTS

Here, a total of 486.27 million reads were mapped to the reference genome of Populus trichocarpa, with an average unique mapping rate of 57.8%. The parents with similar genetic background had distinct DNA methylation levels. F1 hybrids with hybrid vigor possessed non-additive DNA methylation level (their levels were higher than mid-parent values). The DNA methylation levels in promoter and repetitive sequences and transposable element of better-parent F1 hybrids and parents and lower-parent F1 hybrids were different. Compared with the maternal parent, better-parent F1 hybrids had fewer hypermethylated genes and more hypomethylated ones. Compared with the paternal parent and lower-parent L1, better-parent F1 hybrids had more hypermethylated genes and fewer hypomethylated ones. The differentially methylated genes between better-parent F1 hybrids, the parents and lower-parent F1 hybrids were enriched in the categories metabolic processes, response to stress, binding, and catalytic activity, development, and involved in hormone biosynthesis, signaling pathway.

CONCLUSIONS

The methylation patterns of the parents both partially and dynamically passed onto their hybrids, and F1 hybrids has a non-additive mathylation level. A multidimensional process is involved in the formation of heterosis.


DOI: 10.1186/1471-2156-15-S1-S8
PubMed: 25080097
PubMed Central: PMC4118634


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.</title>
<author>
<name sortKey="Gao, Ming" sort="Gao, Ming" uniqKey="Gao M" first="Ming" last="Gao">Ming Gao</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25080097</idno>
<idno type="pmid">25080097</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S8</idno>
<idno type="pmc">PMC4118634</idno>
<idno type="wicri:Area/Main/Corpus">002060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002060</idno>
<idno type="wicri:Area/Main/Curation">002060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002060</idno>
<idno type="wicri:Area/Main/Exploration">002060</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.</title>
<author>
<name sortKey="Gao, Ming" sort="Gao, Ming" uniqKey="Gao M" first="Ming" last="Gao">Ming Gao</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chimera (genetics)</term>
<term>DNA Methylation (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Hybrid Vigor (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Chimère (génétique)</term>
<term>Feuilles de plante (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Méthylation de l'ADN (MeSH)</term>
<term>Populus (génétique)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Vigueur hybride (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chimera</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Chimère</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Methylation</term>
<term>Genome, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Hybrid Vigor</term>
<term>Immunoprecipitation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Immunoprécipitation</term>
<term>Méthylation de l'ADN</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Vigueur hybride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plants with heterosis/hybrid vigor perform better than their parents in many traits. However, the biological mechanisms underlying heterosis remain unclear. To investigate the significance of DNA methylation to heterosis, a comprehensive analysis of whole-genome DNA methylome profiles of Populus deltoides cl.'55/65' and '10/17' parental lines and their intraspecific F1 hybrids lines was performed using methylated DNA immunoprecipitation (MeDIP) and high-throughput sequencing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, a total of 486.27 million reads were mapped to the reference genome of Populus trichocarpa, with an average unique mapping rate of 57.8%. The parents with similar genetic background had distinct DNA methylation levels. F1 hybrids with hybrid vigor possessed non-additive DNA methylation level (their levels were higher than mid-parent values). The DNA methylation levels in promoter and repetitive sequences and transposable element of better-parent F1 hybrids and parents and lower-parent F1 hybrids were different. Compared with the maternal parent, better-parent F1 hybrids had fewer hypermethylated genes and more hypomethylated ones. Compared with the paternal parent and lower-parent L1, better-parent F1 hybrids had more hypermethylated genes and fewer hypomethylated ones. The differentially methylated genes between better-parent F1 hybrids, the parents and lower-parent F1 hybrids were enriched in the categories metabolic processes, response to stress, binding, and catalytic activity, development, and involved in hormone biosynthesis, signaling pathway.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The methylation patterns of the parents both partially and dynamically passed onto their hybrids, and F1 hybrids has a non-additive mathylation level. A multidimensional process is involved in the formation of heterosis.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25080097</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.</ArticleTitle>
<Pagination>
<MedlinePgn>S8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plants with heterosis/hybrid vigor perform better than their parents in many traits. However, the biological mechanisms underlying heterosis remain unclear. To investigate the significance of DNA methylation to heterosis, a comprehensive analysis of whole-genome DNA methylome profiles of Populus deltoides cl.'55/65' and '10/17' parental lines and their intraspecific F1 hybrids lines was performed using methylated DNA immunoprecipitation (MeDIP) and high-throughput sequencing.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, a total of 486.27 million reads were mapped to the reference genome of Populus trichocarpa, with an average unique mapping rate of 57.8%. The parents with similar genetic background had distinct DNA methylation levels. F1 hybrids with hybrid vigor possessed non-additive DNA methylation level (their levels were higher than mid-parent values). The DNA methylation levels in promoter and repetitive sequences and transposable element of better-parent F1 hybrids and parents and lower-parent F1 hybrids were different. Compared with the maternal parent, better-parent F1 hybrids had fewer hypermethylated genes and more hypomethylated ones. Compared with the paternal parent and lower-parent L1, better-parent F1 hybrids had more hypermethylated genes and fewer hypomethylated ones. The differentially methylated genes between better-parent F1 hybrids, the parents and lower-parent F1 hybrids were enriched in the categories metabolic processes, response to stress, binding, and catalytic activity, development, and involved in hormone biosynthesis, signaling pathway.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The methylation patterns of the parents both partially and dynamically passed onto their hybrids, and F1 hybrids has a non-additive mathylation level. A multidimensional process is involved in the formation of heterosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Qinjun</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Yanguang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Changjun</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bingyu</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xiaohua</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006823" MajorTopicYN="Y">Hybrid Vigor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25080097</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S8</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S8</ArticleId>
<ArticleId IdType="pmc">PMC4118634</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):6805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2617-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Nov;113(7):1283-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16932881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jan;120(2):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):57-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Nov;117(8):1271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Feb;23(2):60-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17188398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):875-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1070-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics. 2009 Feb 16;4(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19384058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jan;120(2):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19921139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Mar;11(3):204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Sep 9;401(6749):157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 13;452(7184):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18278030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:411-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21438682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Dec;177(4):1987-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jan 1;16(1):6-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2236-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Oct;43(10):1106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12407189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2009 Mar;47(3):142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18950712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Jul;115(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Sep;12(9):427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22251412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jun;26(6):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 May;6(5):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15861207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jan;120(2):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19526205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Jul;113(2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16791685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2008 Oct;29(19):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18958879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Sep;1(5):720-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):3773-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 24;447(7143):418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 May;92(6):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):416-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23253333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 Feb;49(2):104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16498460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Apr;21(4):515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jan;22(1):17-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20086188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Feb;14(2):247-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14762061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jan;120(2):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19455300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol (Mosk). 2008 Mar-Apr;42(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18610827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 May;16(5):564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
<name sortKey="Gao, Ming" sort="Gao, Ming" uniqKey="Gao M" first="Ming" last="Gao">Ming Gao</name>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002370 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002370 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25080097
   |texte=   Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25080097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020